> Homework \#7 (100 points) - Show all work on the following problems: (Grading rubric: Solid attempt = 50\% credit, Correct approach but errors $=75 \%$ credit, Correct original solution $=100 \%$ credit, Copy of online solutions $=0 \%$ credit)

Problem 1 (30 points): Consider a circular ring in the $x-y$ plane with radius R, centered at the origin, carrying a uniform linear charge density λ. Find the first three terms ($\mathrm{n}=0,1,2=$ monopole, dipole, quadrupole) in the multipole expansion for $V(r, \theta)$. Hints: Note that in this case the 3-d integral of the volume charge density in Eq. 3.95 is replaced by a 1-d integral over the linear charge density λ. Start by expressing the angle α in terms of the spherical coordinate angles θ, ϕ for the position vector and $\theta^{\prime}, \phi^{\prime}$ for the source vector.

Problem 2 (10 points): Find the dipole moment of a spherical shell of radius R with a surface charge $\sigma=k \cos (\theta)$.

Problem 3 (20 points): Show that the electric field of a perfect dipole (Eq. 3.103) can be expressed in the coordinate-free form:

$$
\vec{E}(\vec{r})=\frac{1}{4 \pi \varepsilon_{0}} \frac{1}{r^{3}}[3(\vec{p} \cdot \hat{r}) \hat{r}-\vec{p}]
$$

Problem 4 (20 points): Show that the energy of an ideal dipole \vec{p} in an electric field \vec{E} is given by $U=-\vec{p} \cdot \vec{E}$. Hint: Consider the energy required to assemble the dipole, when bringing the charges from infinity.

Problem 5 (20 points): Consider a sphere of radius R centered at the origin, with a polarization $\vec{P}(\vec{r})=k \vec{r}$.

5a (10 points): Find the bound volume and surface charge densities ρ_{b} and σ_{b}.
5b (10 points): Find the electric field inside and outside the sphere.

